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Abstract

Spatiotemporal data is a common occurrence in a variety of fields such as ecology and epidemiology.
However, observations are often spatially and temporally correlated, leading naive models of such
data to underestimate variance in parameter estimates. Furthermore, methods that do account for

this spatial and temporal dependence often take prohibitively long to estimate due to their
computational complexity. This paper extends a computationally efficient method for spatial

modeling to the spatiotemporal domain while retaining its computational efficiency. We implement
this method and examine its effectiveness using a simulation study and by applying it to Carolina
Wren population counts in the United States between 1990 and 2010. We find that it performs
favorably compared to the naive approach and is significantly more computationally efficient

compared to the full spatiotemporal model. Additionally, it requires much less expert knowledge to
specify compared to comparable methods, making this method an attractive approach for users with

less experience with spatiotemporal modeling.
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1 Introduction

Spatial data are of interest in a wide range of domains. For example, it is important to take into
account patient location when considering disease prevalence in epidemiology. In ecology, studying
and accounting for physical location is crucial to modeling animal populations. When working with
such data, researchers often must take into account the potential spatial dependence; observations
that are close in space are likely to be more similar than observations that are far apart in space. This
violates the independence assumption critical to many common statistical models, such as generalized
linear models. Modeling spatially dependent data using models that assume independence leads
to incorrect standard error calculations, which can, for example, provide misleading results when
performing hypothesis tests. Data collected over time also have the same feature, where observations
close in time are likely to be more similar than observations far apart in time, such as in longitudinal
data or time series. Furthermore, many data contexts have data collected both over time and space.
This means we must not only account for spatial and temporal dependence, but may also need
to account for the ways in which these dependence structures change over time, adding further
complexity to modeling such data.

With higher model complexity often comes computational expense. Because each location and time
can be viewed as additional variables observed on a single data point, spatiotemporal data is often
high dimensional. Models that account for correlation in this way are called random e�ects models,
and consist of �xed e�ects of covariates and random e�ects for each time and location. Such high
dimensionality can make estimating models for even a moderate number of subjects, in the range of
1000 to 10000 observations, take prohibitively long. This computational complexity includes large
matrix operations as well as strong correlations between random e�ects, which slows mixing of Markov
Chain Monte Carlo (MCMC) algorithms when using Bayesian inference [1, 2]. Additionally, many
methods that attempt to make such models computationally tractable do so by requiring the modeler
to specify model features such as assumed basis functions that can make spatiotemporal approaches
inaccessible to those with less statistical training or less computational resources. Developing models
that avoid these shortcomings are a promising path forward to increasing the positive and e�ective
impact of statistics on peoples lives.

One prominent example of the di�culties of spatial methods in practice is the work of the United
Church of Christ's seminal paper on racism in toxic waste facility siting decisions [3, 4]. In the
original study, performed in 1987, and in their follow-up study in 2007, the researchers were unable to
appropriately account for the spatial dependence in both facility locations and populations that live
near them due to lack of methods accessible to social scientists and activists not trained in statistics.
In their 1987 study, this caused them to signi�cantly underestimate the correlation between minority
populations and toxic waste facility sites and so underestimate the e�ects of systemic racism on
environmental hazard siting. While the 2007 study improved on this, they were still unable to come
up with robust estimates of the uncertainty of this correlation.

One recent technique that attempts to account for spatial dependence while prioritizing both
computational e�ciency and speci�cation simplicity is the work of Guan and Haran [ 1] in their
paper �A Computationally E�cient Projection-Based Approach for Spatial Generalized Linear Mixed
Models.� Here, the covariance structure of the data is projected onto a lower-dimensional space,
allowing for speedier computation of matrix operations, while additionally decorrelating random
e�ects, allowing for faster mixing of MCMC methods. In section 2 we discuss existing methods
for modeling spatial and spatiotemporal data. The method from Guan and Haran is discussed in
2.1.4. In section 3, I extend this method into the temporal domain while retaining many of the
computational advantages as well as a relatively simple model speci�cation, making the model more
accessible to non-experts. Section 4 applies this model to both simulated and real-world data to
demonstrate its computational e�ciency as well as its accuracy.
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2 Existing Methods

2.1 Spatial Models

2.1.1 Spatiotemporal Gaussian Processes

One common approach to spatial modeling treats the data as a Gaussian process realized at observed
locations. A Gaussian process is a random process such that every �nite set of random variables
drawn from it, here variables at observed locations, follow a multivariate normal distribution. We use
the notation example in Banerjee, Carlin, and Gelfand [5] and Zhang [6] . Let Y (s) be the response
random variable and x (s) be a p � 1 vector of explanatory variables at spatial location s. Assuming
a linear model betweenx and Y , we let Y (s) be modeled by

Y(s) = x (s)T � (s) + e(s)

where � (s) is a vector of length p of coe�cients, which are often assumed to be identical for each
location, such that � (s) = � . The residual term of the model e(s) can capture spatial dependence if
we let

e(s) = w(s) + � (s)

where � (s) is a Gaussian noise process andw(s) is a spatial Gaussian process realized at locations. If
these processes are realized at a set of locationss, then w � N (0; � (� 2

w ; � )) and � � N (0; � 2
� I ). This

lets w be a mean zero random e�ect with variance parameter� 2
w and an n � n covariance matrix

� (� 2
w ; � ) for n spatial locations. The correlation of the errors across spatial location is assumed to

be a function of distance between spatial points,d, and parameter � , � (d; � ). For the i th and j th
locations si and sj , the distance between them isdij = d(si ; sj ) and

� (� 2
w ; � ) ij = � 2

w � (dij ; � )

The parameter � in the correlation function controls the properties of the assumed correlation
function, such as the strength of correlation between two locations. If points were independent and
the correlation between any two distinct locations were zero, ie.� (dij ; � ) = 0 for i 6= j , our covariance
matrix would be � 2

w I , and our model would simplify to a linear model. For the spatial case, a
common choice for� (�; � ) is the Matérn covariance function. This function has two parameters,�
and � . Only one of these parameters is identi�able, and we often choose to estimate� instead of � [5].
The equation for the Matérn covariance simpli�es signi�cantly for values of � of the form � = n + 1

2
for integers n. In fact, when � is 0.5, the Matérn covariance function simpli�es to the exponential
covariance function. In practice, we often choose� to be one of 0.5, 1.5, or 2.5 to take advantage of
the simpli�ed equations.

2.1.2 SGLMM

This model is referred to as a spatial linear mixed model due to the combination of �xed e�ects�
and spatial random e�ects w(s) [6]. This spatial model can be extended for non-Gaussian outcomes
Y(s) for some link function g(�),

g(E [Y (s)j� ; w(s)]) = x (s)T � + w(s)

w � N (0; � (� 2
w ; � ))

This model is a spatial generalized linear mixed model, or the SGLMM. One issue with the SGLMM
is the high dimension of the random e�ectsw . With the model above, we have one random e�ect
for each location. This can lead to computational issues when the number of locations is large.
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For example, to calculate the likelihood function, we must invert the n � n covariance matrix.
Matrix inversion is a computationally expensive operation, with time complexity O(n3). For large
n, this quickly becomes infeasible. Additionally, when �tting the model using Bayesian methods,
the correlation among the high dimensional random e�ects lowers the e�ciency of MCMC methods,
increasing the number of iterations needed to get an accurate estimate of the posterior distribution
of parameters.

2.1.3 Existing Simpli�cations of the SGLMM

Many approaches have been developed to address the computational issues of �tting SGLMMs to
data. In the Gaussian case, it is possible to integrate out the spatial e�ectsw(s), which is referred
to as marginalization. This allows for simpler model �tting, however it cannot be used for the
non-Gaussian case [7].

One popular choice for dealing with the computational issues encountered with non-Gaussian outcomes
is the predictive process model [8]. The predictive process replacesw(s) with ~w(s), where for some
small set of locationsS� (called knots) that may or may not be disjoint with the observed locations,
we let w � be the realization of the spatial Gaussian process~w(s) at the points in S� . We are then
left with w � � N (0; Cov� (� )) , which has a much smaller dimension covariance matrix. Letc(s0; � )
be the evaluation of the covariance function used to generateCov� (� ) at some point s0 with all of
the knots in S� and, we have

~w(s0) = cT (s0; � )Cov� � 1(� )w �

Thus, when the size of the set of knots is much smaller than the original number of locations, a much
smaller dimension covariance matrix must be inverted. This method e�ectively uses a small set of
locations, spaced over a similar area as the original observed locations, to estimate the parameter�
for the full Gaussian process. In this sense, it is a low-rank method, as the rank of its covariance
matrix is much smaller than that of the original process. Choosing the appropriate knots is not a
straightforward process. Finley et al. [9] propose a sequential search over the observed locations to
select knots which is itself is an intensive process.

Another choice for reducing computational complexity in the SGLMM comes from Hughes and
Haran [10]. They propose using the Moran I operator, which is derived from a common measure
of spatial dependence, the Moran I statistic, to make a low-rank approximation of the spatial
dependence structure. They do this by applying this operator to their observed data, then taking
its eigendecomposition to identify the subset of vectors that best explain the variation in the data.
While this method works well for areal data, it does not apply to situations where data are observed
at points. However, its methodology is very similar to the random projections approach discussed in
2:1:4.

2.1.4 Random Projections for the SGLMM

The random projections based approach to dimension reduction of the spatial e�ects in an SGLMM
from Guan and Haran [1] circumvents the issues of selecting appropriate knots or basis functions.
This low-rank model relies on decorrelating the random e�ects using the eigendecomposition of their
covariance matrix. However, calculating the eigendecomposition of a matrix is a computationally
expensive operation, so they rely on the random projections algorithm to quickly calculate an
approximation of the eigendecomposition. To see how this works, recall the SGLMM framework:

g(E [Y (s)j� ; w(s)]) = x (s)T � + w(s)

w � N (0; � (� 2
w ; � ))

Note that the covariance matrix of w , � (� 2
w ; � ), is symmetric and positive semi-de�nite. This is true

for all covariance matrices, and means that the eigendecomposition� (� 2
w ; � ) = � 2

w V � V T exists for
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real valued diagonaln � n matrix � consisting of the eigenvalues of� (� 2
w ; � ) arranged in descending

magnitude, and real valued orthonormal n � n matrix V , consisting of the eigenvectors of� (� 2
w ; � ).

The properties of orthonormal matrices allow us to create an independent random variable� from
the correlated spatial e�ects w . This � acts as a tool to ease model �tting as we no longer need to
invert the covariance matrix of the spatial e�ects w . Consider

� = ( V � � 1=2)T w

Then, leveraging the fact that becauseV is orthonormal, V � 1 = V T , the covariance matrix of � a
diagonal matrix:

Cov(� ) = Cov((V � � 1=2)T w)

= � � 1=2V Cov(w)V � � 1=2

= � � 1=2V T � 2
w V � V T V � � 1=2

= � 2
w � � 1=2�� � 1=2

= � 2
w I

Hence,� � N (0; � 2
w I ), meaning it is easy to calculate the likelihood of� . Then, we have transferred

the computational complexity of this likelihood calculation into of the eigendecomposition for� (� 2
w ; � ).

However, the eigenvalue decomposition is just as computationally complex as matrix inversion. This
issue is resolved through the use of the random projections algorithm, which creates a low rank
approximation of the eigendecomposition of� (� 2

w ; � ). The details of the method can be found in
Banerjee [11], but broadly consist of using a rank k << n matrix whose elements are randomly
drawn from a Gaussian distribution to project � (� 2

w ; � ) to be rank k, taking the singular value
decomposition of this reduced matrix, then using those values to approximate the eigendecomposition
of the full matrix.

To apply this approximation to the SGLMM, let � (� 2
w ; � ) � ~V ~� ~V

T
where ~V is the n � k matrix of

the approximated leading eigenvectors and~� is the k � k diagonal matrix of associated eigenvalues of

� (� 2
w ; � ). If we now let � = ( ~V ~�

1=2
)T w, we can model the SGLMM using the following speci�cation

g(E [Y (s)j� ; ~V ; ~� ; � ]) = x (s)T � +
h
( ~V ~�

1=2
)�

i

s

� j�; � 2
w _� N (0; � 2

w I )

Notice how ( ~V ~�
1=2

)� = ( ~V ~�
1=2

)( ~V ~�
� 1=2

)T w � w , so we are still modeling our original spatial
random e�ect w , only using the decorrelated random vector� . This model has a number of
advantages. Decorrelation of random e�ects works to increase the rate of MCMC mixing. The model
interpretation is almost unchanged from the original spatial Gaussian process model, only now our
random e�ects are approximations. And, as opposed to choosing basis functions to approximate the
random e�ects or knot locations to use, we simply need to specify the rank of the approximation. If
the rank is su�ciently small, computational issues of calculating the likelihood disappear because
the random projections algorithm has time complexity on the order of O(nk2) as opposed to the
original O(n3) time complexity of matrix inversion. The results are less sensitive to the choice ofk
than compared to choices of basis functions or knots, making this an attractive model for users with
less expertise in spatial modeling [1].
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2.2 Spatiotemporal Models

2.2.1 Spatiotemporal Gaussian Processes

The spatial Gaussian process model can be extended into the spatiotemporal domain. LetY (s; t) be
the response variable at locations and time t. We assume that each location is observed at the same
times as each other location for convenience. Let there ben locations and m times for each location.
Given an explanatory vector x (s; t) of length p, we have

Y(s; t) = x (s; t)T � (s; t) + e(s; t)

e(s; t) = � (s; t) + � (s; t)

As before, we let � (s; t) = � to simplify the model. There are several ways to handle the
spatiotemporal process variable� (s; t). The simplest choice is to let � (s; t) = w(s) + � (t) and
assume our spatial e�ectsw(s) are additive and independent of our temporal e�ects � (t). This
simpli�es the model �tting process. If we let both w(s) and � (t) to be mean zero Gaussian processes,
the full model can be written out as

Y(s; t) = x (s; t)T � + � (s; t) + � (s; t)

� (s; t) = � (t) + w(s)

w � N (0; � (� 2
w ; � ))

� � N (0; � (� 2;  ))

� � N (0; � 2
� I )

where � 2 is the variance parameter of the temporal e�ects and� (� 2;  ) is the m � m temporal
covariance matrix created by an assumed correlation function� (�;  ). As before, � 2

w is the variance
parameter of the spatial e�ects and � (� 2

w ; � ) is the n � n spatial covariance matrix created by an
assumed spatial correlation function� (�; � ).

As in the spatial case, ifY (s; t) are non-Gaussian, we can extend this to the general linear mixed
model formulation by replacing the �rst equation with

g(E [Y (s; t)j� ; � (s; t)]) = x (s)T � + � (s; t)

for some link function g(�). Other choices for� (s; t) include setting � (s; t) = w(s)� (t) and assuming
independence of spatial and temporal e�ects. We might also let� (s; t) = wt (s) so that for each
time t we model di�erent spatial random e�ects wt (s), or analogously � (s; t) = � s(t), so that for
each locations we model di�erent temporal random e�ects � s(t). These two models allow either
the spatial or the temporal e�ect to vary across time or space respectively, but still preclude spatial
and temporal interaction. An attractive approach for spatiotemporal interaction is the dynamic
spatiotemporal model [5, 7]. However, this model is beyond the scope of this paper. All of these
models su�er from similar computational di�culties as in the spatial case, where likelihood evaluation
is computationally intensive due to matrix inversion, and for Bayesian �tting correlated random
e�ects lead to a lower MCMC mixing e�ciency.

2.2.2 Existing Simpli�cations for the Spatiotemporal Gaussian Processes

Similar to the spatial Gaussian process, developing computationally e�cient methods for
spatiotemporal Gaussian processes is an active area of research. For example, to ease MCMC
mixing, Bradley et al. [12] develop a model for count data which uses strategic choices of prior
distributions and parameter distributions to allow the construction of a Gibbs sampler for the model.
This sidesteps di�culties that arise when picking proposal distributions for the high dimensional
random e�ects as required by the Metropolis Hasting algorithm [13]. However, computational issues

5



around calculating the likelihood for the high dimensional random e�ects remain. Bradley et al.'s
[12] model can be extended to use basis function approximations popular in spatial modeling, but
this still leaves the di�culty of determining the appropriate basis functions for a given application.
Other methods focus on low-rank methods analogous to those in the spatial frameworks to reduce
computational load, such as Bradely et al.'s [2] use of the Moran's I basis functions approach.
However, the Moran's I approach only works for areal data. The predictive process can be extended
to the spatiotemporal domain, allowing for modeling of point referenced data, but then the issues of
selecting the appropriate knots (locations) from which to approximate the random e�ects remains.

3 Random Projections for the Spatiotemporal Generalized
Linear Mixed Model

We propose extending the Guan and Haran [1] model to the spatiotemporal case. Then, the gains in
computational e�ciency realized in the SGLMM could be applied to spatiotemporal data, increasing
the size of data that can feasibly be analyzed. Recall the spatiotemporal model with independent
spatial and temporal e�ects given by

Y(s; t) = x (s; t)T � (s; t) + � (s; t) + � (s; t)

� (s; t) = � (t) + w(s)

w � N (0; � (� 2
w ; � ))

� � N (0; � (� 2;  ))

Because the spatial and temporal e�ects are independent, we can apply the random projections
algorithm to one or both of them, depending on the dimension of the temporal and spatial data.
Then, our model would become

Y(s; t) = x (s; t)T � + � (s; t) + � (s; t)

� (s; t) =
h
(UK 1=2)

i

t
+

h
(V � 1=2)�

i

s

� j�; � 2
w _� N (0; � 2

w I )

 j ; � 2 _� N (0; � 2I )

where � ; V ; � are the same as above. The temporal e�ects are decorrelated in the same way as
the spatial e�ects using  = ( UK � 1=2)T � , where the m � m orthonormal matrix U and m � m
diagonal matrix K come from the eigendecompositon of the temporal covariance matrix such that
� 2�(  ) = UKU T . Again, to lower the dimension of these e�ects, we would would choosek << n
and l << m such that ~V is n � k, ~� is k � k, ~U is m � l , ~K is l � l . To model the generalized linear
mixed model version, replace the �rst equation with g(E [Y (s; t)j�; � (s; t)]) = x (s)T � + � (s; t). We
refer to this model as the spatiotemporal generalized linear mixed model, or STGLMM. Whenk � n
and l � m, we refer to this model as the low rank STGLMM, as the rank of the covariance matrices
is signi�cantly reduced. When k = n and l = m, we refer to this as the full ranks STGLMM, which
we analyze to understand the computationally e�ciency of the low rank STGLMM.

To choosek and l, we suggest following the recommendation of Guan and Haran [1]. For the purely
spatial case, they propose selecting thek that minimizes the BIC of a non-spatial generalized linear
model using the decorrelated spatial e�ects� as predictors. To choose the temporal rankl , we choose
to follow the same process, choosingl such that it minimizes the BIC. In practice, due to MCMC
issues, we often choose values that are larger than the values returned by this process, as the spatial
variance tends to grow without bound for small values ofk, and increasing them minimizes this issue.
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3.1 Model Estimation

To implement this model, we wrote code to estimate the STGLMM in R. We estimate the model
using the Bayesian framework due to its relative ease in working with hierarchical models. We
estimate posteriors for our parameters using Gibbs sampling with Metropolis Hastings steps. We
block update the �xed e�ects � using spherical Normal proposals, and similarly block update the
spatial (� ) and temporal ( ) random e�ects using spherical Normal proposals. We let the priors for�
and  each follow a Uniform distribution and � 2

w and � 2 each follow an Inverse Gamma distribution
[5]. Each of the hyperpriors is updated separately. The eigendecompositions of the assumed spatial
and temporal covariance matrices,�( � 2

w ; � ) and �( � 2;  ) respectively, are recalculated when a new
proposal for � or  is accepted. We assume the spatial random e�ects have Matérn covariance with
� = 2 :5. Then, for two locations i and j with distance between themdij ,

�( � 2
w ; � ) ij = � 2

w
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and we assume the temporal random e�ects have squared exponential covariance. Then, for two
times i and j with time di�erence between them hij ,

�( � 2;  ) ij = � 2exp

 

�
h2

ij

2 2

!

The conditional likelihoods we use to accept or reject each Metropolis Hastings step can be found in
appendix A.1. R Code to estimate this particular model is available at this GitHub repo. This code
can estimate models with Poisson or Binomial likelihoods for the above covariance structure. The
code is written using Base R [20] version 4.0.3, and the packages Rcpp [21] and RcppArmadillo [22]
are used to compute matrix decompositions in C++.

4 Applications

In this section we evaluate the STGLMM in two ways. In section 4.1, we present a simulation
study were we compare coverage and point estimates of parameters between the naive GLM and
the low rank STGLMM. We �nd that the low rank STGLMM has superior coverage, especially for
the intercept parameters, and has more accurate point estimates for low and moderate levels of
spatial and temporal dependence. In section 4.2, we compare the low rank STGLMM to the GLM for
population modeling of Carolina Wrens in the United States between 1990 and 2010. We �nd that
while neither model provides an accurate �t to the data, likely due to quirks in the data discussed
later, the low rank STGLMM has a better predictive accuracy for the data set. Our analysis only
explores outcomes that are recorded as counts, and the e�cacy of the model may di�er for other data
that could be modeled using the STGLMM. Several packages were used to produce and visualize
these results. [23, 24, 25, 26, 27, 28, 29, 30]

4.1 A Simulation Study

To assess the quality of the low rank STGLMM, we simulated data from the spatiotemporal Gaussian
process with independent and additive spatial and temporal random e�ects. The spatial and temporal
random e�ects follow the same covariance structures as are used in �tting the low rank STGLMM,
Matérn for spatial e�ects and squared exponential for temporal e�ects. We let the rank of the
approximation of the spatial correlation be 50, and the rank of the approximation of the temporal
correlation be 10. We �nd that for these values MCMC issues are minimized, and the BIC is small for
generalized linear models using the decorrelated spatial and temporal e�ects relative to other values
that minimized MCMC issues. We also �t the same full rank STGLMM, so the approximations are
exact, the understand the speedup of the low rank STGLMM. For these data sets, the low rank model
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�t in approximately half the amount of time as the full rank STGLMM. For each parameter set, we
simulate 100 data sets, where each one consists of 5000 location time pairs. Outcomes are Poisson,
and each outcome has 3 covariates,x 1 ; x 2 ; x 3 , which are independently drawn from N (0; 0:05).
There are 100 locations, and each location is observed at 50 di�erent times spaced uniformly between

0 and 1. Each locations is a 2-dimensional vector such thats = ( s1; s2) and s1; s2
iid� Unif (0; 1).

Each location is observed at the same times, with the di�erence between each consecutive time
being 1

50 . We simulate for 3 di�erent parameter sets. The values of the parameters from which we
simulate are given in Table 1. The values of� and  provide 3 situations from which to simulate.
When � =  = 0 :2, we have little correlation between observations as the scale of distances in time
and space is large relative to the parameter values. When� =  = 1 :0, we have extremely high
correlations between observations as the scale of distances is approximately equal to the parameters.
� =  = 0 :5 represents a situation where there is relatively moderate correlation between neighboring
observations.

For each data set, we �t the low rank STGLMM as described earlier in Section 3. We also �t a
GLM that assumes independence of observations to each data set to understand what we gain by
accounting for spatial and temporal dependence. For the GLM, we assume the outcomes follow a
Negative Binomial distribution as assuming a Poisson distribution performs exceedingly poorly. This
is likely because the Poisson likelihood is overly restrictive given the additional structure provided by
the spatial and temporal e�ects, while the Negative Binomial likelihood is better able to account for
this structure. Each GLM is estimated using rstanarm with 2 chains of 5000 iterations each, the
�rst 2500 of which are thrown out for the burn-in period. rstanarm uses Hamiltonian Monte Carlo
sampling as opposed to Gibbs sampling with Metropolis Hastings steps used for sampling the low
rank STGLMM model, but the interpretation of outcomes is identical. For the low rank STGLMM,
we run 2 chains of 30000 iterations each, the �rst 15000 of which are thrown out for the burn-in
period. We �t these models for each of the 100 simulated data sets for each parameter set, and record
the 50% and 90% credible intervals, as well as the median estimate for each parameter, which we use
as our point estimate.

Table 1: Parameter Sets for Simulated Data

Parameter Set � 0 � 1 � 2 � 3 � 2
w � 2 �  

1 1 1 1 -1 1 1 0.2 0.2
2 1 1 1 -1 1 1 0.5 0.5
3 1 1 1 -1 1 1 1.0 1.0
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Figure 1: Distribution of point estimates for �xed e�ects across 100 simulated data sets with
� =  = 0 :2. Black lines show the true value.
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Figure 2: Distribution of point estimates for �xed e�ects across 100 simulated data sets with
� =  = :5. Black lines show the true value.
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Figure 3: Distribution of point estimates for �xed e�ects across 100 simulated data sets with
� =  = 1 . Black lines show the true value.

Figures 1, 2, and 3 show the distribution of point estimates for the �xed e�ects coe�cients � 0, � 1, � 2,
� 3 under the 3 sets of correlation parameter values. The estimates of both the lwo rank STGLMM
and the GLM appear to be unbiased estimates for the true values of �xed e�ect coe�cients other
than the intercept � 0. However the low rank STGLMM's estimates have a much lower standard
error compared to the GLM. Interestingly, the GLM actually performs better compared to itself
with respect to its point estimates variance as� and  increase, corresponding to higher spatial and
temporal correlation. Both models provide poor estimates of the intercept� 0 as there is increased
variability in the intercept due to the random e�ects. In the low rank STGLMM, this is likely due
to the random e�ects being correlated with the intercepts. Examining the chains for an example
simulated dataset shows that often the chains of some of the synthetic random e�ects� and  are
highly correlated with the intercept chains, leading to slower mixing. This could be contributing to
the relatively poor estimate of the intercept for the low rank STGLMM. For the GLM the error in
the intercept likely occurs because the true model is not a GLM with Negative Binomial outcomes.
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Figure 4: Distribution of point estimates for random e�ect hyperparameters across 100 simulated
data sets with � =  = 0 :2. Black lines show the true value.
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Figure 5: Distribution of point estimates for random e�ect hyperparameters across 100 simulated
data sets with � =  = 0 :5. Black lines show the true value.
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Figure 6: Distribution of point estimates for random e�ect hyperparameters across 100 simulated
data sets with � =  = 1 . Black lines show the true value.

Figures 4, 5, and 6 show the distributions of the point estimates of the model hyperparameters
controlling the random e�ects of the low rank STGLMM. The low rank STGLMM consistently
overestimates the amount of spatial covariance between locations. This is to be expected, as the
low-rank of the approximated spatial e�ects means it is only able to represent the most dominant
components of the true spatial correlation structure. In order to account for the missing spatial
correlation from less dominant components of the correlation structure, it in�ates the estimates of
� and � 2

w . This does not occur in the temporal hyperparameters and � 2. This is likely the case
because the true correlation structure is much less complex, as times are evenly spaced between 0
and 1 instead of randomly located on a unit square. The Markov chains used to estimate� 2

w when
� = 0 :2 also show a consistent and accelerating trend towards large values as the length of the chain
increases, meaning the posterior for� 2

w is likely unreliable. There are also issues in some of the
random e�ects estimates, however the most prominent, separation of the chains, can be explained by
noting that they tend to converge towards the same absolute value. In this case, it's likely that the
sign of the singular values has �ipped between chains, causing them to converge to opposite values.
The Markov chains for one of the simulated data sets for� =  = 0 :2 can be viewed in Appendix
A.3 for reference.

Because the GLM ignores correlation between observations, we would expect it to underestimate the
standard error of its parameter estimates. One way to understand how accurate a model's parameter
estimates are is to examine their coverage, or how often their credible intervals of parameters contain
the true values of those parameters. If the models perfectly captured the truth, we would expect
the true parameters to be in the 50% credible intervals in 50 of the 100 simulations, and in the 90%
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Table 2: Proportion of times true value is within 50% and 90% credible intervals across 100 simulated
datasets

Model CI � 0 � 1 � 2 � 3 � 2
w � 2 �  

� =  = 0 :2
GLM

50% 0.00 0.35 0.43 0.51 NA NA NA NA
90% 0.02 0.82 0.83 0.79 NA NA NA NA

STGLMM
50% 0.27 0.62 0.52 0.67 0.04 0.48 0.04 0.31
90% 0.49 0.90 0.95 0.96 0.07 0.84 0.05 0.57

� =  = 0 :5
GLM

50% 0.00 0.49 0.38 0.53 NA NA NA NA
90% 0.00 0.91 0.86 0.91 NA NA NA NA

STGLMM
50% 0.22 0.55 0.48 0.49 0.13 0.43 0.15 0.68
90% 0.35 0.90 0.87 0.90 0.21 0.74 0.31 0.90

� =  = 1 :0
GLM

50% 0.00 0.58 0.58 0.41 NA NA NA NA
90% 0.00 0.90 0.94 0.88 NA NA NA NA

STGLMM
50% 0.28 0.56 0.50 0.53 0.33 0.39 0.34 0.71
90% 0.46 0.95 0.92 0.90 0.57 0.83 0.60 0.98

credible intervals in 90 of the 100 simulations. Looking at Table 2, we see that in general the low rank
STGLMM has more accurate coverage compared to the GLM. This di�erence is especially stark when
comparing the intercepts. When � =  = 0 :2, the true value is in the 50% credible interval in 0 of
the simulations for the GLM, and it is in the 90% credible interval in only 2 of the simulations. These
credible intervals can be viewed in Appendix A.2. While the low rank STGLMM still underestimates
the standard error of its parameter estimates, it far outperforms the GLM, capturing the true value
in its 50% and 90% credible intervals for the intercept in 27 and 49 of the simulations respectively.
The GLM performs signi�cantly better when estimating the �xed e�ects other than the intercept.
This is because the random e�ects are random intercepts and not random slopes, so while each
data point provides less information about the intercept than expected, they provide exactly as
much information about the other coe�cients as expected. Across both the GLM and the low rank
STGLMM, coverage improves as� and  increase. Mirroring the results from the point estimates of
the hyperparamters, the low rank STGLMM has superior coverage for the temporal parameters than
the spatial parameters.

4.2 Bird Population Counts

One commonly used spatiotemporal data set comes from the Breeding Bird Survey, which is a
collaboration between the United States Geological Service and the Canadian Wildlife Service to
monitor the status of North American bird populations [ 14]. For this survey, researchers drive along
approximately 25 mile routes, stopping numerous times and counting the number of birds of each
species observed at that stop. The survey began in 1966 and has steadily expanded to include over
4100 routes and 420 di�erent bird species. For the purposes of this paper, we consider observations
of the Carolina Wren at 171 routes between 1990 and 2010. These routes were chosen as they have
complete data for this time span.
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Figure 7: Observed Carolina Wrens at Selected Sites for 1990 Survey

Figure 7 shows the locations of routes as well as the number of Carolina Wrens observed at each route
during the 1990 survey. As can be seen, Carolina Wrens live primarily in the American South-East.
Notice how there appears to be a spatial pattern to these data. For example, we tend to see larger
numbers of birds observed in and around Northern Florida and Louisiana, and fewer birds further
West in the area around Arkansas. This spatial pattern suggests that the data are spatially correlated,
meaning methods explicitly taking spatial correlation into account may be warranted.
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Figure 8: Observed Carolina Wrens at Selected Sites for 1991 Survey

In Figure 8 we see data for the 1991 survey at the same routes as the 1990 survey. While the data
have changed, broad patterns remain similar, suggesting there may be temporal correlation as well.
If both spatial and temporal dependence are present, it is appropriate to use a spatiotemporal model
to capture the correlation structure.

4.2.1 GLM

For comparison to a model that doesn't take into account spatial or temporal dependence, we'll �t
a generalized linear model to the data and compare it to the low rank spatiotemporal generalized
linear mixed model outlined in Section 3. We will use the observed number of birds on a route in
that year as the outcomeY (s; t) for a location s and year t, with the stratum as a predictor. The
stratum represents type of ecosystem the route is in as de�ned by ecologists at the Breeding Bird
Survey. Examples include Upper Coastal Plain and Coastal Flatwoods, the later of which we show
coe�cient estimates for. We'll use a Poisson likelihood for the model to be comparable to the low
rank STGLMM with a log link function g(�) = log(�).

Here, we use� 1 to represent the set of coe�cients representing the di�erent possible values of stratum.
There were 18 di�erent observed strata, so� 1 actually represents 17 di�erent coe�cients. A row
x (s; t) of our design matrix x consists of dummy variables representing the stratum the observation
was located in. The mean model we �t is

log(E [Y (s; t)j� 0; � 1 ]) = � 0 + x (s; t)T � 1
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� 0; � 1
iid� N (0; 102)

The GLM was �t using the rstanarm package [31] for Bayesian modeling. We ran 2 chains with
10000 iterations each, and removed the �rst 5000 iterations as the burnout period.

Figure 9 shows the posterior predictions across each location and time. The predictions are far
from the observed value, suggesting this model doesn't fully capture the dynamics surrounding bird
populations in our data. There is also relatively little variance in predicted estimates, suggesting that
this model may be overcon�dent in its predictions. This makes sense given spatiotemporal correlation.
Recall that assuming independence when the data are correlated has the e�ect of overestimating the
amount of data the model has access to, de�ating the variance estimates.

Figure 9: Posterior Predictions for the Generalized Linear Model. True distribution shown in dark
blue, predicted distributions shown in light blue.

4.2.2 STGLMM

Now we consider the low rank STGLMM de�ned in section 3. Again we'll use a log link function, but
this time we will include our spatial and temporal random e�ects. In full, the low rank STGLMM
can be written

log(E [Observed Birdsj� 0; � 1 ; � (s; t)]) = � 0 + x (s; t)T � 1 + � (s; t)

� (s; t) =
h
(UK 1=2)

i

t
+

h
(V � 1=2)�

i

s

� j�; � 2
w _� N (0; � 2

w I )
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 j ; � 2 _� N (0; � 2I )

� 0; � 1 � N (0; 102I )

� � Unif (0:01; 1:5)

 � Unif (0:01; 1:5)

� 2
w � Gamma(2; 2)

� 2 � Gamma(2; 2)

We adopt Uniform priors for � and  and Gamma priors for � 2
w and � 2 following the recommendations

of Banerjee et al. [5]. We again ran 2 chains with 10000 iterations each, and removed the �rst 5000
iterations as the burnout period. The data were identical to those used to �t the generalized linear
model. Figure 10 shows the posterior predictions across each location and time.

Figure 10: Posterior Predictions for the Spatiotemporal Generalized Linear Mixed Model. True
distribution shown in dark blue, predicted distributions shown in light blue.

Note how the low rank STGLMM produces a much wider spread of predictions than the GLM.
This re�ects the higher variance in parameter estimates we would expect when data are correlated.
However, while the low rank STGLMM has a better coverage of the true outcomes than the GLM,
both are biased. This is likely due in part to the structure of the data. There are no routes in
the dataset for which there were 0 observations of birds on the route that year. It may be the
case that some routes aren't missing each year because they weren't surveyed but rather because 0
birds were observed and so the route was excluded from the data. If this is the case, it might be
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more appropriate to use a model where 0 values are disallowed, such as a zero-truncated Poisson
distribution as opposed to a standard poisson distribution. However, this is beyond the scope of this
paper.

Figure 11: Posterior estimates for the Coastal Flatwoods stratum coe�cient. The shaded region is
95% central posterior density, the dark blue line is the coe�cient point estimate using the median of
the draws.

Figure 11 displays the posterior density for the stratum representing the coe�cient for the Coastal
Flatwoods ecosystem. There is a much larger variance in plausible estimates for the parameter in the
low rank STGLMM compared to the GLM. Also note how the low rank STGLMM has a greater
deviation from the expected Normal distribution. This is because the low rank STGLMM sampler
is more slowly mixing, leading to a smaller e�ective sample size. While both of these models took
similar amounts of time to estimate, the quality of posterior estimates from the generalized linear
model are superior. Running the low rank STGLMM for a larger number of iterations may minimize
this issue.

5 Discussion and Future Work

As expected, the proposed low rank STGLMM has much more accurate estimates of coverage for
�xed e�ect parameters compared to the GLM when data are spatially and temporally correlated.
Somewhat surprisingly, the low rank STGLMM's point estimates of these parameters are more
accurate when spatial and temporal correlation is low to moderate. These gains also come at a
relatively reduced computational cost compared to the full rank model, taking approximately half as
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long to estimate the parameters compared to the full model. When data are larger, we can expect
these computational gains to increase. While the model takes signi�cantly longer than the naive GLM
approach, the improved accuracy in credible intervals is likely worth the additional computational
burden in most cases. The low rank STGLMM also performs well on the Carolina Wren population
data compared to the GLM providing a better predictive accuracy even under mispeci�cation of the
likelihood model.

However, the low rank STGLMM is not without limitations. In the simulation study, the low rank
STGLMM consistently overestimates parameters de�ning the spatial covariance structure. This is a
well known problem in low rank models for spatial covariance structures, as they only capture the
largest components of spatial covariance, and occasionally magnify the components they capture to
account for loss of covariance structure from smaller components. As can be seen from the coverage
estimates of the intercept in table 2 however, the low rank STGLMM still underestimates the true
variance caused by correlated outcome. An important area of future work for this model would be
developing bias corrections to these estimates of spatial covariance. Finley et al. [9] propose such a
bias correction for the predictive process model, however their bias correction limits the model to
have Gaussian outcomes [5]. It may be that an analogous bias correction for the low rank STGLMM
would also limit it to model Gaussian outcomes.

Another important limitation to the low rank STGLMM is the issue of spatial and temporal
confounding. This occurs when the �xed e�ect parameters are correlated with the spatial or temporal
random e�ects. An example of this comes in the Carolina Wren data, where it is highly likely that
the stratum, which represent ecosystems, are correlated with the spatial random e�ects. This is a
well studied problem which can lead to biased or de�ated variance estimates of parameters of interest
[15, 16]. Several methods have been developed in an attempt to circumvent spatial and temporal
confounding. Notably, Guan and Haran [1] follow the approach used by Hughes and Haran [10]
as well as Hanks et al. [16] called restricted spatial regression. Here, we restrict the spatial and
temporal random e�ects to be perpendicular to the �xed e�ects. However, after years of use, Khan
and Calder [17] found that this approach has counterintuitive e�ects that cause it to provide worse
estimates than the naive non-spatial model in many cases. For this reason, we chose not to include
restricted spatial regression in the low rank STGLMM. However, it still su�ers from the issues of
spatial and temporal confounding, and it may be prudent to attempt to incorporate other methods
for addressing confounding, such as the work of Prates et al. [18].

Finally, it is important to note that this paper does not compare the low rank STGLMM to other
computationally e�cient models for spatiotemporal modeling. This was in part due to the fact
that very few models have public implementations that work with non-Gaussian outcomes, and so
comparison with newer approaches is infeasible. However, there are approaches, such as integrated
nested Laplace approximations (INLA), that have shown promise in spatial and spatiotemporal
applications [19]. This approach is an alternative to MCMC methods for Bayesian inference that
is often more computationally e�cient, meaning it may outperform methods based on MCMC for
spatiotemporal modeling. An interesting future direction of work on the low rank STGLMM would be
using INLA as opposed to MCMC in order to provide still faster model estimation for very large data.
One advantage the low rank STGLMM does hold compared to virtually every comparable method is
the easy of implementation. While the model's MCMC requires tuning, the model speci�cation itself
requires the user to choose only two parameters, the rank of the spatial approximation and the rank
of the temporal approximation. When compared to require the user to specify basis functions to
approximate the covariance structure or select a set of knots, this model becomes very attractive for
users who are relatively inexperienced with spatiotemporal modeling.
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